数字特征¶
数学期望¶
离散型随机变量¶
期望
绝对可求和¶
要求
即 \(E(|X|)\) 绝对收敛。
Note
条件 \(E(|X|) < \infty\) 表示期望 \(\displaystyle\sum_{i=1}^{\infty}x_ip_i\) 的求和不受求和顺序的影响。
当这个条件不满足时,期望不存在。
连续性随机变量¶
设 \(X \sim p(x)\),则 \(X\) 的期望为
存在条件:绝对可积,即
期望的性质¶
- \(a \leq X \leq b \Rightarrow a \leq EX \leq b\)
-
线性运算、加法定理
\[ E(aX + bY) = aEX + bEY \]
随机变量函数的数学期望¶
设 \(f: \mathbb{R} \rightarrow \mathbb{R}\) 是一个函数,\(X\) 是一个随机变量,求 \(Ef(X)\)。
-
\(X\) 是离散型随机变量
\[ P(X = x_k) = p_k, k = 1, 2, \cdots, N \]则
\[ Ef(X) = \sum_{k=1}^{N} f(x_k) p_k \] -
\(X\) 是连续型随机变量
\[ X \sim p(x), -\infty < x < \infty \]则
\[ Ef(X) = \int_{-\infty}^{\infty} f(x) p(x) \ \mathrm{d}x \] -
\(X\) 是混合型随机变量
\(X\) 有分布函数 \(F(x)\),则
\[ Ef(X) = \int_{-\infty}^{\infty} f(x) \ \mathrm{d}F(x) \](黎曼积分)
方差¶
方差的定义¶
衡量随机变量偏差的大小。
标准差:\(\sqrt{E((X - EX)^2)}\)
方差:\(VarX = E((X - EX)^2)\)
方差的计算¶
公式:
方差的性质¶
- \(Var(X + a) = VarX\)
- \(Var(aX) = a^2 VarX\)
- \(Var(a + bX) = b^2 VarX\)
- \(Var(X + Y) = VarX + VarY + 2E(X - EX)(Y - EY) = VarX + VarY + 2Cov(X, Y)\)
- 当 \(X\) 和 \(Y\) 相互独立时,\(Var(X + Y) = VarX + VarY\),独立和的方差等于方差之和。
-
当 \(c \not= EX\) 时,\(Var(X) < E((X - c)^2)\)
证明
\[ \begin{aligned} Var(X) &= E((X - EX)^2) \\ &= E((X - c - (EX- c))^2) \\ &= E((X - c)^2 - 2(X - c)(EX - c) + (EX - c)^2) \\ &= E((X - c)^2) - (EX - c)^2 \\ &< E((X - c)^2) \end{aligned} \] -
\(Var(\sum_{i=1}^n X_i) = \sum_{i=1}^n Var(X_i) + 2 \sum_{i<j} Cov(X_i, X_j)\)
Chebyshev 不等式¶
设 \(X\) 是一个随机变量,\(\forall \varepsilon > 0\),有
证明
设 \(X \sim p(x)\),则
推广
设 \(f\) 是单调不减严格正函数,则
证明
应用¶
-
设 \(X \sim N(\mu, \sigma^2)\),则
\[ P(|X - \mu| > 3\sigma) \leq \frac{\sigma^2}{9\sigma^2} = \frac{1}{9} \]这种方法上界与真实值相差很大
-
设 \(S_n \sim B(n, p)\),其中 \(p\) 未知,想要用 \(\dfrac{S_n}{n}\) 来估计 \(p\),则试验次数 \(n\) 和精度 \(\varepsilon\) 的大致关系:
\[ \begin{aligned} P(|\frac{S_n}{n} - p| > \varepsilon) &\leq \frac{Var(\frac{S_n}{n})}{\varepsilon^2} \\ &= \frac{Var(S_n)}{n^2 \varepsilon^2} \\ &= \frac{p(1-p)}{n \varepsilon^2} \\ &\leq \frac{1}{4n \varepsilon^2} \end{aligned} \]改进
令 \(f(x) = x^4\),则
\[ \begin{aligned} P(|\frac{S_n}{n} - p| > \varepsilon) &\leq \frac{E(\frac{S_n}{n} - p)^4}{\varepsilon^4} \\ &= \frac{E(S_n - np)^4}{n^4 \varepsilon^4} \\ &\approx \frac{c}{n^2 \varepsilon^4} \end{aligned} \] -
当 \(VarX = 0\),则
\[ P(X = EX) = 1 \]证明
即证 \(P(|X - EX| > 0) = 0\)。
对于 \(\forall \varepsilon > 0\),有
\[ P(|X - EX| > \varepsilon) \leq \frac{VarX}{\varepsilon^2} = 0 \]因此
\[ \begin{aligned} P(|X - EX| > 0) &= P(\bigcup_{n=1}^{\infty} \{|X - EX| > \frac{1}{n}\}) \\ &\leq \sum_{n=1}^{\infty} P(|X - EX| > \frac{1}{n}) \\ &= 0 \end{aligned} \]证毕。
协方差¶
-
均值向量:\(\vec{\mu} = (EX, EY)\) 表示向量均值。
-
协方差:假设 \(X\) 和 \(Y\) 的方差存在,令
\[ Cov(X, Y) = E[(X - EX)(Y - EY)] \]表示 \(X\) 和 \(Y\) 的协方差。
计算公式:\(Cov(X, Y) = EXY - EXEY\)
-
运算性质:
\[ \begin{aligned} Cov(aX + b, cY + d) &= E[(aX + b)(cY + d)] - E(aX + b)E(cY + d) \\ &= acE(XY) - acEXEY \\ &= acCov(X, Y) \end{aligned} \]
Cauchy-Schwarz 不等式¶
证明
不妨设 \(EX = EY = 0\),则需要证明
对于 \(\forall t > 0\),有
则 \(EX^2 + 2tE|XY| + t^2 EY^2 \geq 0\),故
即
协方差矩阵¶
假设 \(X\) 和 \(Y\) 的方差存在,令
称为 \(X\) 和 \(Y\) 的协方差矩阵。
协方差矩阵的性质¶
-
\(\Sigma\) 非负定,对于 \(\forall x, y \in \mathbb{R}\),有
\[ (x, y) \begin{pmatrix} VarX & Cov(X, Y) \\ Cov(X, Y) & VarY \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \geq 0 \]证明
\[ \begin{aligned} (x, y) \begin{pmatrix} VarX & Cov(X, Y) \\ Cov(X, Y) & VarY \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} &= x^2 VarX + 2xy Cov(X, Y) + y^2 VarY \\ &= x^2 E(X - EX)^2 + 2xy E[(X - EX)(Y - EY)] + y^2 E(Y - EY)^2 \\ &= E[x(X - EX) + y(Y - EY)]^2 \\ &\geq 0 \end{aligned} \] -
如果 \(X,Y\) 独立,则
\[ Cov(X, Y) = 0 \]证明
\[ \begin{aligned} Cov(X, Y) &= E[(X - EX)(Y - EY)] \\ &= E(X - EX)E(Y - EY) \\ &= 0 \end{aligned} \]
定义
若
则称 \(X\) 和 \(Y\) 不相关。
如果 \(X\) 和 \(Y\) 独立,则 \(X\) 和 \(Y\) 不相关,但反之不成立。
-
\(X,Y\) 不相关并不意味着 \(X,Y\) 独立。
例
设 \(\theta \sim U(0, 2\pi)\),\(X = \cos \theta\),\(Y = \sin \theta\),则
\[ EX = EY = 0, VarX = VarY = \frac{1}{2}, Cov(X, Y) = 0 \]但
\[ X^2 + Y^2 \equiv 1 \]因此 \(X,Y\) 不独立。
二元联合正态分布
设 \((X,Y) \sim N(\mu_1, \sigma_1^2, \mu_2, \sigma_2^2, \rho)\),则
线性变换后的协方差矩阵¶
设 \(N\) 维随机向量 \(\mathbf{X} = (X_1, X_2, \cdots, X_N)^T\) 服从均值 \(E(\mathbf{X}) = 0\),协方差矩阵为 \(\Sigma_{\mathbf{X}}\) 的正态分布,设随机向量
则随机向量 \(\mathbf{Y}\) 的均值和协方差矩阵满足:
证明
\(E(\mathbf{Y}) = \mathbf{A} E(\mathbf{X}) = 0\) 显然。
设 \(\mathbf{A} = (a_{ij})_{N \times N}\),则对于 \(\forall 1 \leq i, j \leq N\),有
又有 \(Cov(X_i, X_j) = E((X_i - EX_i)(X_j - EX_j)) = E(X_i X_j)\),因此
由于 \(\Sigma_{\mathbf{X}} = (Cov(X_i, X_j))_{N \times N}, \Sigma_{\mathbf{Y}} = (Cov(Y_i, Y_j))_{N \times N}\),因此可以看出
相关系数¶
定义
称为 \(X\) 和 \(Y\) 的相关系数,反映 \(X\) 和 \(Y\) 之间的相关程度。
相关系数的性质¶
-
由 Cauchy-Schwarz 不等式可知
\[ |\gamma| \leq 1 \] -
当 \(\gamma = 1\) 时,存在 \(t_0 = \sqrt{\dfrac{VarX}{VarY}}\),使得
\[ P(X = t_0(Y - EY) + EX) = 1 \]即 \(X\) 和 \(Y\) 是正线性相关的。
证明
即证 \(X - EX - t_0(Y - EY) = 0\)。
由 \(\gamma = 1\) 可知
\[ Cov(X, Y) = \sqrt{VarX} \sqrt{VarY} \]取 \(t_0 = \sqrt{\dfrac{VarX}{VarY}}\),有
\[ \begin{aligned} E(X - EX - t_0(Y - EY))^2 &= E(X - EX)^2 + t_0^2 E(Y - EY)^2 - 2t_0 E(X - EX)(Y - EY) \\ &= VarX + t_0^2 VarY - 2t_0 Cov(X, Y) \\ &= 2VarX - 2\sqrt{\frac{VarX}{VarY}} (\sqrt{VarX} \sqrt{VarY}) \\ &= 0 \end{aligned} \]因此
\[ X - EX - t_0(Y - EY) = E(X - EX - t_0(Y - EY)) = 0 \]证毕。
类似,当 \(\gamma = -1\) 时,存在 \(t_0 = -\sqrt{\dfrac{VarX}{VarY}}\),使得
\[ P(X = t_0(Y - EY) + EX) = 1 \]即 \(X\) 和 \(Y\) 是负线性相关的。
-
有
\[ \gamma = 0 \Leftrightarrow \text{不相关} \]“不相关”可以解释为“不线性相关”。
条件期望与全期望公式¶
离散型随机变量的条件期望¶
给定 \(Y = y_j\),\(X\) 的条件期望为
要求
否则条件期望不存在。
连续型随机变量的条件期望¶
给定 \(Y = y\),\(X\) 的条件期望为
要求
否则条件期望不存在。
二元联合正态分布的条件期望
\((X, Y) \sim N(\mu_1, \sigma_1^2, \mu_2, \sigma_2^2, \rho)\),则
给定 \(Y = y\),\(X\) 的条件分布为
因此
令 \(g(y) = E(X|Y = y)\),则
即 \(E_Y(E_X(X|Y)) = EX\)。
全期望公式¶
设 \(X,Y\) 是随机变量,令
即 \(g(Y) = E(X|Y)\),则
结论 \(E(E(X|Y)) = EX\) 称为全期望公式。
矩¶
k 阶矩(原点矩):\(E(X^k)\)
k 阶中心矩:\(E[(X - EX)^k]\)
随机变量的分布是否由其矩唯一确定
一般情况下不能。
定理
设 \(X\) 和 \(Y\) 是两个随机变量,如果对于 \(\forall k \geq 1\),有
若下列三个条件之一成立:
- \(\displaystyle\sum_{k=1}^\infty \dfrac{m_{2k}t^{2k}}{(2k)!} < \infty, \exists t > 0\)
- \(\displaystyle\sum_{k=1}^\infty m_{2k}^{-\frac{1}{2k}} < \infty\)
- \(\displaystyle\lim_{k \rightarrow \infty} \sup |m_k|^{\frac{1}{k}} < \infty\)
则 \(X\) 和 \(Y\) 的分布函数相同。
特征函数¶
设 \(X \sim F(x)\),定义
为 \(X\) 的特征函数。其中 \(Ee^{itX} = E\cos tX + iE\sin tX\) 存在且有限。
计算公式:
特征函数的性质¶
- \(\varphi(0) = 1\)
-
\(|\varphi(t)| \leq 1 = \varphi(0)\)
证明
\[ \begin{aligned} |\varphi(t)| &= |E(e^{itX})| \\ &= |\int_{-\infty}^{\infty} e^{itx} \ \mathrm{d}F(x)| \\ &\leq \int_{-\infty}^{\infty} |e^{itx}| \ \mathrm{d}F(x) \\ &= 1 \end{aligned} \] -
\(\varphi(-t) = \overline{\varphi(t)}\)
-
\(\varphi(t)\) 在 \(\mathbb{R}\) 上一致连续
证明
即证,对于 \(\forall \varepsilon > 0\),\(\exists \delta > 0, \forall h < \delta, \forall t \in \mathbb{R}\),有
\[ |\varphi(t + h) - \varphi(t)| < \varepsilon \]由 \(\varphi(t)\) 的定义可知
\[ \begin{aligned} |\varphi(t + h) - \varphi(t)| &= |E(e^{i(t+h)X}) - E(e^{itX})| \\ &= |E(e^{itX}(e^{ihX} - 1))| \\ &\leq E|e^{ihX} - 1| \end{aligned} \]固定 \(\varepsilon > 0\),设 \(X \sim F(x)\),则 \(\exists M > 0\),使得
\[ P(|X| > M) = 1 - F(M) + F(-M) \leq \frac{\varepsilon}{4} \]则
\[ \begin{aligned} |\varphi(t + h) - \varphi(t)| &\leq E|e^{ihX} - 1| \\ &= \int_{-\infty}^{\infty} |e^{ihx} - 1| \ \mathrm{d}F(x) \\ &= \int_{|x| > M} |e^{ihx} - 1| p(x) \ \mathrm{d}x + \int_{|x| \leq M} |e^{ihx} - 1| p(x) \ \mathrm{d}x \\ &< I_1 + I_2 \end{aligned} \]其中 \(I_1 < 2 \cdot \dfrac{\varepsilon}{4} = \dfrac{\varepsilon}{2}\),对于 \(I_2\):
\[ \begin{aligned} |e^{ihx} - 1| &= |e^{i\frac{h}{2}x}||e^{i\frac{h}{2}x} - e^{-i\frac{h}{2}x}| \\ &= 2|\sin \frac{hx}{2}| \\ &\leq 2|\frac{hx}{2}| \\ &= |hx| \\ &\leq hM \end{aligned} \]因此
\[ |\varphi(t + h) - \varphi(t)| < I_1 + I_2 < \frac{\varepsilon}{2} + hM \]取 \(\delta = \dfrac{\varepsilon}{2M}\),则当 \(h < \delta\) 时,有
\[ |\varphi(t + h) - \varphi(t)| < \frac{\varepsilon}{2} + hM < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \]证毕。
-
Bochner 非负定性
对任何实数 \(t_1, t_2, \cdots, t_n\),复数 \(a_1, a_2, \cdots, a_n\),有
\[ \sum_{i=1}^n \sum_{j=1}^n a_i \overline{a_j} \varphi(t_i - t_j) \geq 0 \]证明
令 \(X \sim F(x)\),则
\[ \begin{aligned} \sum_{i=1}^n \sum_{j=1}^n a_i \overline{a_j} \varphi(t_i - t_j) &= \sum_{i=1}^n \sum_{j=1}^n a_i \overline{a_j} E(e^{i(t_i - t_j)X}) \\ &= E\sum_{i=1}^n \sum_{j=1}^n a_i \overline{a_j} e^{it_iX} \overline{e^{it_jX}} \\ &= E|\sum_{i=1}^n a_i e^{it_iX}|^2 \\ &\geq 0 \end{aligned} \] -
可微性
设 \(EX\) 存在且 \(EX = \mu\),则 \(\varphi(t)\) 可微
则 \(\varphi'(0) = i\mu\)
\[ \begin{aligned} \varphi'(t) &= \frac{\mathrm{d}}{\mathrm{d}t} E(e^{itX}) \\ &= \int_{-\infty}^{\infty} \frac{\mathrm{d}}{\mathrm{d}t} e^{itx} p(x) \ \mathrm{d}x \\ &= i \int_{-\infty}^{\infty} xe^{itx} \ \mathrm{d}F(x) \end{aligned} \]类似,如果 \(E|X|^k < \infty\),则
\[ \varphi^{(k)}(t) = i^k \int_{-\infty}^{\infty} x^k e^{itx} \ \mathrm{d}F(x) \]\(\varphi(t)\) 在 0 处可以进行 k 次展开:
\[ \begin{aligned} \varphi(t) &= \varphi(0) + \varphi'(0)t + \frac{\varphi''(0)}{2!}t^2 + \cdots + \frac{\varphi^{(k)}(0)}{k!}t^k + o(t^k) \\ &= 1 + iE(X)t - \frac{1}{2}E(X^2)t^2 + \cdots + i^k \frac{E(X^k)}{k!}t^k + o(t^k) \end{aligned} \]
特征函数的运算性质¶
-
令 \(X\) 的特征函数为 \(\varphi_X(t)\),则
\[ \varphi_{aX+c}(t) = E(e^{it(aX+c)}) = e^{itc}E(e^{i(at)X}) = e^{itc}\varphi_X(at) \]Example
设 \(X \sim N(0, 1), Y \sim N(\mu, \sigma^2)\),则
\[ Y = \sigma X + \mu \]因此
\[ \varphi_Y(t) = e^{it\mu} \varphi_X(\sigma t) = e^{it\mu - \frac{1}{2} \sigma^2 t^2} \] -
乘法公式
若 \(X, Y\) 相互独立,则 \(Z = X + Y\) 的特征函数为
\[ \varphi_Z(t) = \varphi_X(t) \varphi_Y(t) \]推广
若 \(X_1, X_2, \cdots, X_n\) 相互独立,则 \(Z = \sum_{i=1}^n X_i\) 的特征函数为
\[ \varphi_Z(t) = \prod_{i=1}^n \varphi_{X_i}(t) \] -
唯一性问题:如果 \(\varphi_X(t) = \varphi_Y(t)\),则
\[ X \overset{d}{=} Y, \qquad F_X \equiv F_Y \]推论
-
连续性情况
若 \(X\) 的特征函数 \(\varphi(t)\) 绝对可积,则 \(X\) 具有密度函数 \(p(x)\),且
\[ p(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-itx} \varphi(t) \ \mathrm{d}t \]对偶公式
已知 \(X \sim p(x)\),则
\[ \varphi(t) = \int_{-\infty}^{\infty} e^{itx} p(x) \ \mathrm{d}x \]Example
\(\varphi(t) = e^{-|t|}\) 是一个特征函数,求其对应的密度函数。
解
\(\varphi(t)\) 绝对可积,因此存在密度函数 \(p(x)\),且
\[ \begin{aligned} p(x) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-itx} e^{-|t|} \ \mathrm{d}t \\ &= \frac{1}{2\pi} \left[ \int_{0}^{\infty} e^{-itx} e^{-t} \ \mathrm{d}t + \int_{-\infty}^{0} e^{-itx} e^{t} \ \mathrm{d}t \right] \\ &= \frac{1}{\pi} \cdot \frac{1}{1 + x^2} \end{aligned} \]故 \(X \sim p(x) = \dfrac{1}{\pi} \cdot \dfrac{1}{1 + x^2}\)。
-
离散性情况
设 \(\varphi(t)\) 是一个特征函数,若
\[ \varphi(t) = \sum_{k=-\infty}^{\infty} a_k e^{itk} \]且
\[ a_k \geq 0, \qquad \sum_{k=-\infty}^{\infty} a_k = 1 \]则
\[ P(X = k) = a_k \]Example
设 \(\varphi(t) = \cos t\),则有
\[ \varphi(t) = \frac{1}{2} e^{it} + \frac{1}{2} e^{-it} \]因此
\[ P(X = 1) = \frac{1}{2}, \qquad P(X = -1) = \frac{1}{2} \]
利用唯一性,可以利用已知的分布判断随机变量的分布。
Example
设 \(X_k \sim N(\mu_k, \sigma_k^2), k = 1, 2, \cdots, n\),求
\[ Z = \sum_{k=1}^n X_k \]的分布。
解
-
先求 \(Z\) 的特征函数
\[ \begin{aligned} \varphi_Z(t) &= \prod_{k=1}^n \varphi_{X_k}(t) \\ &= \prod_{k=1}^n e^{it\mu_k - \frac{1}{2} \sigma_k^2 t^2} \\ &= e^{it\sum_{k=1}^n \mu_k - \frac{1}{2} t^2 \sum_{k=1}^n \sigma_k^2} \end{aligned} \] -
将其与正态分布的特征函数比较,可得
\[ Z \sim N(\sum_{k=1}^n \mu_k, \sum_{k=1}^n \sigma_k^2) \]
-
二元随机向量的特征函数¶
设 \((X, Y)\) 是二维随机向量,其特征函数为
当 \(X, Y\) 相互独立时,有
Example
设 \((X, Y) \sim N(\mu_1, \sigma_1^2, \mu_2, \sigma_2^2, \rho)\),求 \(\varphi(t_1, t_2)\)。
解
假设 \((X, Y) \sim N(0, 1, 0, 1, \rho)\),令
设
根据 3.2.2 节中的结论,有
因此 \(Cov(U, V) = 0 \Rightarrow \gamma_{UV} = 0\),即 \((U, V) \sim N(0, 1, 0, 1, 0)\),即 \(U, V\) 相互独立。则
因此
回到原问题,已经得到当 \((\xi, \eta) \sim N(0, 1, 0, 1, \rho)\) 时的特征函数为
原 \((X, Y) \sim N(\mu_1, \sigma_1^2, \mu_2, \sigma_2^2, \rho)\),有
因此
常见随机变量的期望、方差¶
离散型随机变量¶
退化分布
-
期望
\[ E(X) = c \] -
方差
\[ VarX = E(X^2) - (EX)^2 = c^2 - c^2 = 0 \] -
特征函数
\[ \varphi(t) = E(e^{itX}) = e^{itc} \]
二项 Bernoulli 分布
-
期望
\[ E(X) = \sum_{k=0}^n k \binom{n}{k} p^k (1-p)^{n-k} = np \] -
方差
\[ \begin{aligned} VarX &= E(X^2) - (EX)^2 \\ &= n(n-1)p^2 + np - n^2p^2 \\ &= np(1-p) \end{aligned} \]过程
\[ \begin{aligned} E(X^2) &= \sum_{k=0}^n k^2 \binom{n}{k} p^k (1-p)^{n-k} \\ &= \sum_{k=1}^n k(k-1) \binom{n}{k} p^k (1-p)^{n-k} + \sum_{k=1}^n k \binom{n}{k} p^k (1-p)^{n-k} \\ &= \sum_{k=2}^n \frac{n!}{(k - 2)! (n - k)!} p^k (1-p)^{n-k} + np \\ &= n(n-1)p^2\sum_{k=2}^n \binom{n-2}{k-2} p^{k-2} (1-p)^{(n-2)-(k-2)} + np \\ &= n(n-1)p^2 + np \\ \end{aligned} \]使用方差的性质
令 \(X_i\) 表示第 \(i\) 次试验中成功的次数。
\[ X_i = \begin{cases} 1, & p \\ 0, & 1 - p \end{cases} \]则
\[ VarX = \sum_{i=1}^n VarX_i = np(1-p) \] -
特征函数
\[ \begin{aligned} \varphi(t) &= E(e^{itX}) \\ &= \sum_{k=0}^n e^{itk} \binom{n}{k} p^k (1-p)^{n-k} \\ &= \sum_{k=0}^n \binom{n}{k} (pe^{it})^k (1-p)^{n-k} \\ &= (pe^{it} + 1 - p)^n \end{aligned} \]使用每次试验的独立性
\[ \begin{aligned} \varphi(t) &= E(e^{itX}) \\ &= E(e^{it(X_1 + X_2 + \cdots + X_n)}) \\ &= E(\prod_{i=1}^n e^{itX_i}) \\ &= \prod_{i=1}^n E(e^{itX_i}) \\ &= \prod_{i=1}^n (pe^{it} + 1 - p) \\ &= (pe^{it} + 1 - p)^n \end{aligned} \]
Poisson 分布
-
期望
\[ \begin{aligned} E(X) &= \sum_{k=0}^\infty k \frac{\lambda^k}{k!} e^{-\lambda} \\ &= \lambda e^{-\lambda} \sum_{k=0}^\infty \frac{\lambda^k}{k!} \\ &= \lambda e^{-\lambda} e^\lambda \\ &= \lambda \end{aligned} \] -
方差
\[ \begin{aligned} VarX &= E(X^2) - (EX)^2 \\ &= \lambda^2 + \lambda - \lambda^2 \\ &= \lambda \end{aligned} \]过程
\[ \begin{aligned} E(X^2) &= \sum_{k=0}^\infty k^2 \frac{\lambda^k}{k!} e^{-\lambda} \\ &= \sum_{k=1}^\infty k(k-1) \frac{\lambda^k}{k!} e^{-\lambda} + \sum_{k=1}^\infty k \frac{\lambda^k}{k!} e^{-\lambda} \\ &= \sum_{k=2}^\infty \frac{\lambda^k}{(k-2)!} e^{-\lambda} + \lambda \\ &= \lambda^2 + \lambda \end{aligned} \] -
矩
\[ EX(X-1)\cdots(X-k+1) = \lambda^k, k \geq 1 \]证明
\[ \begin{aligned} EX(X-1)\cdots(X-k+1) &= \sum_{x=0}^\infty x(x-1)\cdots(x-k+1) \frac{\lambda^x}{x!} e^{-\lambda} \\ &= \sum_{x=k}^\infty \frac{x!}{(x-k)!} \frac{\lambda^x}{x!} e^{-\lambda} \\ &= \sum_{x=k}^\infty \frac{\lambda^x}{(x-k)!} e^{-\lambda} \\ &= \lambda^k \sum_{x=k}^\infty \frac{\lambda^{x-k}}{(x-k)!} e^{-\lambda} \\ &= \lambda^k \end{aligned} \]则
\[ \begin{aligned} E(X^2) &= EX(X-1) + EX = \lambda^2 + \lambda \\ E(X^3) &= EX(X-1)(X-2) + 3EX(X-1) + EX = \lambda^3 + 3\lambda^2 + \lambda \\ E(X^4) &= EX(X-1)(X-2)(X-3) + 6EX(X-1)(X-2) + 7EX(X-1) + EX = \lambda^4 + 6\lambda^3 + 7\lambda^2 + \lambda \\ \cdots \end{aligned} \] -
特征函数
\[ \begin{aligned} \varphi(t) &= E(e^{itX}) \\ &= \sum_{k=0}^\infty e^{itk} \frac{\lambda^k}{k!} e^{-\lambda} \\ &= e^{-\lambda} \sum_{k=0}^\infty \frac{(\lambda e^{it})^k}{k!} \\ &= e^{-\lambda} e^{\lambda e^{it}} \\ &= e^{\lambda(e^{it} - 1)} \end{aligned} \]
几何分布
超几何分布
-
期望
令 \(X_i\) 表示第 \(i\) 次抽检时的次品个数。
\[ X_i = \begin{cases} 1, & p = \frac{M}{N} \\ 0, & 1 - p = \frac{N-M}{N} \end{cases} \]得到 \(E(X_i) = \dfrac{M}{N}\),因此
\[ E(X) = \sum_{k=0}^n E(X_i) = n \frac{M}{N} \]不放回抽样每次抽样同分布不独立
设 \(A_i\) 表示第 \(i\) 次抽检时抽到次品。
\[ \begin{aligned} p(A_2) &= p(A_1) p(A_2 | A_1) + p(\overline{A_1}) p(A_2 | \overline{A_1}) \\ &= \frac{M}{N} \times \frac{M-1}{N-1} + \frac{N-M}{N} \times \frac{M}{N-1} \\ &= \frac{M^2 - M + NM - M^2}{N(N-1)} \\ &= \frac{M}{N} \end{aligned} \]由数学归纳法可知,\(p(A_i) = \dfrac{M}{N}\)。
连续型随机变量¶
均匀分布
-
期望
\[ EX = \int_a^b \frac{x}{b-a} \ \mathrm{d}x = \frac{a+b}{2} \] -
方差
\[ \begin{aligned} VarX &= E(X^2) - (EX)^2 \\ &= \int_a^b \frac{x^2}{b-a} \ \mathrm{d}x - \left(\frac{a+b}{2}\right)^2 \\ &= \frac{b^3 - a^3}{3(b-a)} - \left(\frac{a+b}{2}\right)^2 \\ &= \frac{(b-a)^2}{12} \end{aligned} \] -
特征函数
\[ \begin{aligned} \varphi(t) &= E(e^{itX}) \\ &= \int_a^b \frac{e^{itx}}{b-a} \ \mathrm{d}x \\ &= \frac{e^{itb} - e^{ita}}{it(b-a)} \end{aligned} \]
指数分布
-
期望
\[ \begin{aligned} EX &= \int_0^\infty \lambda x e^{-\lambda x} \ \mathrm{d}x \\ &= -\int_0^\infty x \ \mathrm{d}e^{-\lambda x} \\ &= \left. -x e^{-\lambda x} \right|_0^\infty + \int_0^\infty e^{-\lambda x} \ \mathrm{d}x \\ &= \frac{1}{\lambda} \\ \end{aligned} \] -
方差
\[ \begin{aligned} VarX &= E(X^2) - (EX)^2 \\ &= \frac{2}{\lambda^2} - \frac{1}{\lambda^2} \\ &= \frac{1}{\lambda^2} \end{aligned} \]过程
\[ \begin{aligned} E(X^2) &= \int_0^\infty \lambda x^2 e^{-\lambda x} \ \mathrm{d}x \\ &= -\int_0^\infty x^2 \ \mathrm{d}e^{-\lambda x} \\ &= \left. -x^2 e^{-\lambda x} \right|_0^\infty + \int_0^\infty 2x e^{-\lambda x} \ \mathrm{d}x \\ &= \frac{2}{\lambda^2} \end{aligned} \] -
特征函数
\[ \begin{aligned} \varphi(t) &= E(e^{itX}) \\ &= \int_0^\infty \lambda e^{-\lambda x} e^{itx} \ \mathrm{d}x \\ &= \int_0^\infty \lambda e^{-(\lambda - it)x} \ \mathrm{d}x \\ &= -\lambda \left. \frac{e^{-(\lambda - it)x}}{\lambda - it} \right|_0^\infty \\ &= \frac{\lambda}{\lambda - it} \end{aligned} \]
正态分布
-
期望
\[ EX = \int_{-\infty}^{\infty} \frac{x}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \ \mathrm{d}x = \mu \] -
方差
\[ \begin{aligned} VarX &= E(X^2) - (EX)^2 \\ &= \sigma^2 + \mu^2 - \mu^2 \\ &= \sigma^2 \end{aligned} \]过程
\[ \begin{aligned} E(X^2) &= \int_{-\infty}^{\infty} \frac{x^2}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \ \mathrm{d}x \\ &= \int_{-\infty}^{\infty} \frac{(x-\mu+\mu)^2}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \ \mathrm{d}x \\ &= \int_{-\infty}^{\infty} \frac{(x-\mu)^2}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \ \mathrm{d}x + \int_{-\infty}^{\infty} \frac{2\mu(x-\mu)}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \ \mathrm{d}x + \int_{-\infty}^{\infty} \frac{\mu^2}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \ \mathrm{d}x \\ &= \sigma^2 + 0 + \mu^2 \\ &= \sigma^2 + \mu^2 \end{aligned} \] -
矩
设 \(X \sim N(0, \sigma^2)\),则
\[ E(X^{2k+1}) = 0, E(X^{2k}) = (2k-1)!! \sigma^{2k} \]证明
\[ \begin{aligned} E(X^{2k}) &= \int_{-\infty}^{\infty} \frac{x^{2k}}{\sqrt{2\pi}\sigma} e^{-\frac{x^2}{2\sigma^2}} \ \mathrm{d}x \\ &= -\int_{-\infty}^{\infty} \frac{x^{2k-1}\sigma}{\sqrt{2\pi}} \ \mathrm{d}e^{-\frac{x^2}{2\sigma^2}} \\ &= -\left. \frac{x^{2k-1}\sigma}{\sqrt{2\pi}} e^{-\frac{x^2}{2\sigma^2}} \right|_{-\infty}^{\infty} + \int_{-\infty}^{\infty} \frac{(2k-1)x^{2k-2}\sigma^2}{\sqrt{2\pi}\sigma} e^{-\frac{x^2}{2\sigma^2}} \ \mathrm{d}x \\ &= (2k-1)\sigma^2 E(X^{2k-2}) \\ &= (2k-1)!! \sigma^{2k} \end{aligned} \]对于 \(X^{2k+1}\),由于 \(X\) 是偶函数,因此
\[ E(X^{2k+1}) = 0 \] -
特征函数
Info
对于 \(X \sim N(0, 1)\),有
\[ \int_{-\infty}^\infty \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \ \mathrm{d}x = 1 \]得到
\[ \int_{-\infty}^\infty e^{-\frac{x^2}{2}} \ \mathrm{d}x = \sqrt{2\pi} \]对于 \(X \sim N(\mu, \sigma^2)\),有
\[ \begin{aligned} \varphi(t) &= E(e^{itX}) \\ &= \int_{-\infty}^\infty \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} e^{itx} \ \mathrm{d}x \\ &= \int_{-\infty}^\infty \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2 - 2i\sigma^2tx}{2\sigma^2}} \ \mathrm{d}x \\ &= \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^\infty e^{-\frac{(x-\mu - i\sigma^2t)^2 + \sigma^4t^2 - 2\mu i\sigma^2t}{2\sigma^2}} \ \mathrm{d}x \\ &= \frac{1}{\sqrt{2\pi}} e^{\mu it - \frac{1}{2}\sigma^2t^2} \int_{-\infty}^\infty e^{-\frac{1}{2}(\frac{x-\mu - i\sigma^2t}{\sigma})^2} \ \mathrm{d}\frac{x-\mu - i\sigma^2t}{\sigma} \\ &= e^{\mu it - \frac{1}{2}\sigma^2t^2} \end{aligned} \]得到
\[ \varphi(t) = e^{\mu it - \frac{1}{2}\sigma^2t^2} \]对于标准正态分布,有 \(\varphi(t) = e^{-\frac{1}{2}t^2}\)。